Year 4: Week 6, Day 3 Co-ordinates

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. If possible, watch the PowerPoint presentation with a teacher or another grown-up.

OR start by carefully reading through the Learning Reminders.

2. Tackle the questions on the Practice Sheet.

There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Have I mastered the topic? A few questions to Check your understanding.
Fold the page to hide the answers!

Learning Reminders

Learning Reminders

Learning Reminders

Read and plot co-ordinates in the first quadrant; Complete polygons by giving missing points.

Learning Reminders

Read and plot co-ordinates in the first quadrant; Complete polygons by giving

 missing points.

Practice Sheet Mild Plotting shapes

Plot the points on the grid, join them and write the name of this shape.

1. $\quad A(3,7) \quad B(3,3) \quad C(7,3) \quad D(7,7)$

2. $\quad A(2,1) \quad B(8,1) \quad C(2,7)$

3. $\quad A(9,1) \quad B(9,8) \quad C(5,8) \quad D(5,1)$

4. $\quad A(3,0) \quad B(5,9) \quad C(7,0)$

Challenge

Three corners of a square are located at $(3,0),(5,8)$ and $(0,5)$. Where is the 4 th corner?
© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Practice Sheet Hot Plotting shapes

Plot the points on the grid, join them and find the missing point to make the shape.

1. Square
$A(3,8) \quad B(3,2) \quad C(6,5)$

2. Right-angled triangle

A $(2,1) \quad B(8,1)$

2. Rectangle

A $(9,1) \quad B(9,8) \quad C(5,8)$

4. Isosceles triangle

A $(0,2) \quad B(0,8)$

Challenge

Draw your own set of 0 to 10 axes. Plot co-ordinates $(4,4)$ and $(0,4)$. Find the missing pairs of co-ordinates to form the vertices of 3 different squares.
© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Practice Sheet Answers

Plotting shapes (mild)

1. Square
2. Right angled triangle
3. Rectangle
4. Isoceles triangle

Challenge

The 4th corner is at $(3,8)$.

Plotting shapes (hot)

1. $(0,5)$
2. $(5,1)$
3. Lots of possible answers including co-ordinates starting with 2, e.g.
$(2,2)$ up to $(2,10)$ or starting 8 , e.g. $(8,2)$ up to $(8,10)$.
4. Isoceles triangle missing co-ordinates could be $(1,5),(2,5),(3,5)$, etc.

Challenge

Missing pairs of co-ordinates to form a square are:
$(0,0)$ and $(4,0)$: $(0,8)$ and $(4,8)$; and $(2,2)$ and $(2,6)$

Things you will need:

- 0 to 9 cards
- Co-ordinate grid

What to do:

- Play with a partner.
- Each person has a co-ordinate grid.
- Shuffle the pack of 0-9 cards.
- Take 2 cards to make a pair of co-ordinates.
- Plot this point on your grid.
- These hints help you to remember the order to plot co-ordinates (x co-ordinate first, then y co-ordinate):

Walk before you fly

Along the corridor
 then up the stairs

- Have you both drawn the point in the same place?
- If so, you both score 10 points. If not, work out where it should be. Remember to 'go across' before you 'go up'!
- Put the cards back and repeat four more times (remember the order you plot the points).
- Join your points without crossing any of your lines. What shape have you formed?
- Use a different colour pencil to join your points in the order you plotted them. Have you formed any shapes? What are they?
- Repeat with a new co-ordinate grid.
© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

A Bit Stuck?
 Matching points

© Hamilton Trust. Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

Check your understanding

Questions

Draw a 6 by 6 co-ordinate grid; label the \boldsymbol{x} and \boldsymbol{y} axes.
Mark these co-ordinates:
A $(1,1) \quad B(1,4) \quad C(4,1)$
Join these and name the shape created.
Add another co-ordinate, so that if you join all four vertices you create a 4 -sided shape that is not a square.

Sam says that if she draws a square on a co-ordinate grid, then two of its corners will always have the same ' x ' co-ordinate and two will have the same ' y ' co-ordinate.
Is she correct?

Fold here to hide answers

Check your understanding
 Answers

Draw a 6 by 6 grid; label the \boldsymbol{x} and \boldsymbol{y} axes.
Mark these co-ordinates: A $(1,1) \mathrm{B}(1,4) \mathrm{C}(4,1)$.
Join these and name the shape created. Right-angled isosceles triangle.
Add another co-ordinate so that if you join all four vertices you create a 4 -sided shape that is not a square. Any point other than (4, 4).
Children should be using a ruler and pencil to draw co-ordinate grids on squared paper. Coordinates should be clearly marked at the intersection of the vertical and horizontal lines.

Sam says that if she draws a square on a co-ordinate grid, then two of its corners will always have the same ' x ' co-ordinate and two will have the same ' y ' co-ordinate.
Is she correct?
This is true if the square is aligned with the horizontal and vertical axis. Since the distances between the corners are equal the x and y co-ordinates will be in pairs, e.g. A $(1,1) B(1,4)$ $C(4,1) D(4,4)$.

