Week 10, Day 1

Use mental strategies to multiply. Solve scaling problems.

Each day covers one maths topic. It should take you about 1 hour or just a little more.

- 1. Start by reading through the Learning Reminders. They come from our *PowerPoint* slides.
- Tackle the questions on the Practice Sheet. There might be a choice of either Mild (easier) or Hot (harder)! Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Think you've cracked it? Whizzed through the Practice Sheets? Have a go at the **Investigation**...

Write a number that goes between 2.3 and 2.4.

Learning Reminders

Learning Reminders

Use mental strategies to multiply by 20; Solve scaling problems.

A group of people have a made a scale model of a prehistoric scene to show relative sizes of different dinosaurs.

Scaling up

Each dimension of the model dinosaur is 1/20 of what is thought to have been the actual size. Work out the real height and length of each dinosaur.

Dinosaur	Model height	Actual height	Model length	Actual length		
Tyrannosaurus Rex	35cm		76cm			
Brachiosaurus	76cm		1.52m			
Velociraptor	3cm		9cm			
Diplodocus	37cm		1.35m			
Plateosaurus	11cm		39cm			
How can we work out the full size of each dinosaur?						

Practice Sheet Mild Scaling up

Each dimension of the model dinosaur is $\frac{1}{20}$ of what is thought to have been the actual size. Calculate the actual height and length of each dinosaur.

Dinosaur	Model height	Actual height	Model length	Actual length
Tyrannosaurus Rex	35cm		76cm	
Brachiosaurus	41cm		76cm	
Velociraptor	3cm		9cm	
Diplodocus	37cm		135cm	
Plateosaurus	llcm		39cm	

Explore more Hamilton Trust Learning Materials at <u>https://wrht.org.uk/hamilton</u>

Practice Sheet Hot Scaling up

An architect has made a scale model of a house. Each dimension in the table is $\frac{1}{8}$ of what will be the actual size. Calculate the length and width of each room.

Room	Model width	Actual width	ual width Model length	
Kitchen	43cm		52cm	
Living room	63cm		67cm	
Bedroom 1	46cm		54cm	
Bedroom 2	39cm		44cm	
Bathroom	28cm		34cm	

Explore more Hamilton Trust Learning Materials at <u>https://wrht.org.uk/hamilton</u>

Practice Sheets Answers

Scaling up (mild)

Dinosaur	Model height	Actual height	Model length	Actual length
Tyrannosaurus Rex	35cm	7m	76cm	15.2m
Brachiosaurus	41cm	8.2m	76cm	15.2m
Velociraptor	3cm	0.6m	9cm	1.8m
Diplodocus	37cm	7.4m	1.35cm	27m
Plateosaurus	llcm	2.2m	39cm	7.8m

 \bigcirc

Scaling up (hot)

Room	Model width	Actual width	Model length	Actual length
Kitchen	43cm	3.44m	52cm	4.16m
Living room	63cm	5.04m	67cm	5.36m
Bedroom 1	46cm	3.68m	54cm	4.32m
Bedroom 2	39cm	3.12m	44cm	3.52m
Bathroom	28cm	2.24m	34cm	2.72m

© Hamilton Trust

 \bigcirc

 \wedge

 \bigcirc

 \bigcirc

Explore more Hamilton Trust Learning Materials at <u>https://wrht.org.uk/hamilton</u>

 \bigcirc

 \bigcirc

_

At Magic School, a class of children are now 5 times their size due to a Maximus spell!

A new classroom must be created until the spell can be reversed...

- Ask an adult to help you to measure your height in metres to the nearest 10cm.
 - Multiply this measurement by 5. You can do this by multiplying by 10, and then halving.

This will be your new height for Hogwarts classroom.

Repeat for your handspan and head circumference, measuring to the nearest centimetre.

Calculate the necessary size of some objects in the classroom, e.g. height and length of tables, chairs, pencils, books.

Item to be measured	Measurement now	Measurement for Hogwarts classroom
My height		
My handspan		
My head circumference		
Length of pencil		
Height of chair		
Height of table		
Length of book		

 $\ensuremath{\mathbb{C}}$ Hamilton Trust

Explore more Hamilton Trust Learning Materials at https://wrht.org.uk/hamilton

۲ %	+ ?	$= x cm^3 \frac{1}{2} \div \frac{1}{2} \frac{1}{3} > m^2$	* %	5 4	5⁄6	– cm	?	*	÷	⅓
م ۲	Investigation								+	
m²		Get to the	e roo	ot						w
^	1.	Spread the multiplier cards out face up.	U							×
*	2.	One person writes a 2-digit number.	0							Cm ³
w	3.	Their partner chooses a multiplier card.	0		mber is a					1/2
40	4.	Each multiply these two numbers and	C		e multip 1 = 145	lier 5				-1-
1/2		agree an answer.	C) ~ Q)	<u></u>					m
сm³	5.	Write the digital root of your original number.	0	Digita	root 2) is 2				~
×		To find this, you add the digits.	0	(2+9	= 11 an	d + =	2)			V
w		If the answer still has 2 digits, add	0	2×5	= 10 and	4 + 0 =	1			, H
٩٠	,	these digits.	0							*
*	6.	Multiply this digital root by your multiplier card and find the digital root of	0			145 is 1				%
ۍ.		the answer.	0	(1 + 4	+5=	0 and 1	+ 0 =	1)		~
cm	7.	Now find the digital root of the answer to your original multiplication.	0							5%
1	8.	Compare the answer to step 5 with the								- CH
%	answer to step 6.					n :				
V	Repeat steps 2 to 8 at least six times taking different starting numbers.								¥	
%		What do you notice? What bappens if you start with a 3-digit pur	nher (ea 244	5 x 4					-۱۰
m² +		What happens if you start with a 3-digit number, e.g. 246 x 4								
										CIM 3
%										1/2
3										-1-
• •										m
.÷. τ∕ι										~
cm ³	2									V
X C		Challenge								, H
w		Can you think how this could be used to help p calculations are correct?	eople	check v	whethe	r their				*
۰.	© Hamil [.]	ton Trust Explore more Hamilton Trust Lear	ning M	aterials o	at https:	://wrht.or	g.uk/ł	namilt	on	N
۷	+ ?	$= x cm^3 \frac{1}{2} \div \xi \frac{1}{3} > m^2$	* %	5 4	5⁄6	– cm	;	×	÷	⅓

