Week 10, Day 1
 Use mental strategies to multiply. Solve scaling problems.

Each day covers one maths topic. It should take you about 1 hour or just a little more.

1. Start by reading through the Learning Reminders. They come from our PowerPoint slides.

2. Tackle the questions on the Practice Sheet.

There might be a choice of either Mild (easier) or Hot (harder)!
Check the answers.

3. Finding it tricky? That's OK... have a go with a grown-up at A Bit Stuck?

4. Think you've cracked it? Whizzed through the Practice Sheets? Have a go at the Investigation...

Learning Reminders

Use mental strategies (factors and multiples) to multiply by 5, 20, 6, 4 and 8.
$84 \times 10=840$
$84 \times 5=420$

> How can we use 84×10
> $=840$ to work out the answer to 84×5 ?

We can multiply numbers by 5 by multiplying by 10 , and then halving.

We can double the answer to 84×10.

Choose four other 2-digit numbers to multiply by 5 and 20 using the strategy of multiplying by $\mathbf{1 0}$ then either halving or doubling.

$$
\begin{array}{ll}
36 \times 10=360 & 75 \times 10=750 \\
36 \times 5=180 & 75 \times 5=375 \\
36 \times 20=720 & 75 \times 20=1500 \\
& \\
42 \times 10=420 & 68 \times 10=680 \\
42 \times 5=210 & 68 \times 5=340 \\
42 \times 20=840 & 68 \times 20=1360
\end{array}
$$

Learning Reminders

Use mental strategies (factors and multiples) to multiply by 5, 20, 6, 4 and 8.

Learning Reminders

Use mental strategies (factors and multiples) to multiply by 5, 20, 6, 4 and 8.

Doubling three times Double 43, double the answer, then double again.

decide which you preferred.

```
43 x }
double 43 is 86
double 86 is }17
double 172 is 
(8 x 40) + (8 x 3)
= 320+24
= 344
```


Learning Reminders

Use mental strategies to multiply by 20; Solve scaling problems.

A group of people have a made a scale model of a prehistoric scene to show relative sizes of different dinosaurs.

Scaling up

Each dimension of the model dinosaur is $1 / 20$ of what is thought to have been the actual size. Work out the real height and length of each dinosaur.

Dinosaur	Model height	Actual height	Model length	Actual length
Tyrannosaurus Rex	35 cm		76 cm	
Brachiosaurus	76 cm		1.52 m	
Velociraptor	3 cm		9 cm	
Diplodocus	37 cm		1.35 m	
Plateosaurus	11 cm		39 cm	

How can we work out the
full size of each dinosaur?
Multiply by 20.
Watch your units!

Practice Sheet Mild

Scaling up

Each dimension of the model dinosaur is $\frac{1}{20}$ of what is thought to have been the actual size. Calculate the actual height and length of each dinosaur.

Dinosaur	Model height	Actual height	Model length	Actual length
Tyrannosaurus Rex	35 cm		76 cm	
Brachiosaurus	41 cm		76 cm	
Velociraptor	3 cm		9 cm	
Diplodocus	37 cm		135 cm	
Plateosaurus	11 cm		39 cm	

Practice Sheet Hot

Scaling up
An architect has made a scale model of a house. Each dimension in the table is $\frac{1}{8}$ of what will be the actual size. Calculate the length and width of each room.

Room	Model width	Actual width	Model length	Actual length
Kitchen	43 cm		52 cm	
Living room	63 cm		67 cm	
Bedroom 1	46 cm		54 cm	
Bedroom 2	39 cm		44 cm	
Bathroom	28 cm		34 cm	

Practice Sheets Answers

Scaling up (mild)

Dinosaur	Model height	Actual height	Model length	Actual length
Tyrannosaurus Rex	35 cm	7 m	76 cm	15.2 m
Brachiosaurus	41 cm	8.2 m	76 cm	15.2 m
Velociraptor	3 cm	0.6 m	9 cm	1.8 m
Diplodocus	37 cm	7.4 m	1.35 cm	27 m
Plateosaurus	11 cm	2.2 m	39 cm	7.8 m

Scaling up (hot)

Room	Model width	Actual width	Model length	Actual length
Kitchen	43 cm	3.44 m	52 cm	4.16 m
Living room	63 cm	5.04 m	67 cm	5.36 m
Bedroom 1	46 cm	3.68 m	54 cm	4.32 m
Bedroom 2	39 cm	3.12 m	44 cm	3.52 m
Bathroom	28 cm	2.24 m	34 cm	2.72 m

A Bit Stuck? Hogwart's new classroom
 At Magic School, a class of children are now 5 times their size due to a

 Maximus spell!A new classroom must be created until the spell can be reversed...

- Ask an adult to help you to measure your height in metres to the nearest 10 cm .
- Multiply this measurement by 5. You can do this by multiplying by 10, and then halving.
This will be your new height for Hogwarts classroom.
- Repeat for your handspan and head circumference, measuring to the nearest centimetre.
- Calculate the necessary size of some objects in the classroom, e.g. height and length of tables, chairs, pencils, books.

Item to be measured	Measurement now	Measurement for Hogwarts classroom
My height		
My handspan		
My head circumference		
Length of pencil		
Height of chair		
Height of table		
Length of book		

